Acta Cryst. (1976). B32, 2234

Tetraphenylarsenic Hexakis(isothiocyanato)indate(III)

BY F.W. B. EINSTEIN,* M. M. GILBERT, D. G. TUCK[†] AND P. L. VOGEL

Department of Chemistry, Simon Fraser University, Burnaby, B.C., V5A 1S6, Canada

(Received 20 February 1976; accepted 11 March 1976)

Abstract. $[As(C_6H_5)_{4]_3}[In(NCS)_6]$, M = 1613, monoclinic, C2/c, a = 47.696 (9), b = 20.069 (7), c = 16.382 (3) Å, $\beta = 103.04$ (1)°, V = 15274 Å³; $\varrho_o = 1.43$ (3) (flotation in chloroform-n-butyl bromide), Z = 8, $\varrho_c = 1.40$ g cm⁻³. Mo $K\alpha_1$ radiation, $\lambda = 0.70926$ Å, F(000) = 6512, $T = 22 \pm 2$ °C. Final R = 0.072 for 2792 observed reflexions. There are eight $In(NCS)_6^{3-1}$ ions in the unit cell; half of these are situated on centres of symmetry, the other half on twofold axes. Coordination of the thiocyanate ligand is through N (average In-N = 2.12 Å) and, within error limits, the coordination about each In atom is octahedral.

Introduction. The reaction of In^{III} isothiocyanate with various thiocyanate salts of organic cations in ethanol gives rise to two series of anionic In^{III} isothiocyanato complexes, involving $[In(NCS)_s]^{2-}$ and $[In(NCS)_6]^{3-}$, respectively (Habeeb & Tuck, 1973). Vibrational spectroscopy served to establish that in each case bonding to the metal is through the N atom. In view of the current interest in five-coordinate complexes, it seemed appropriate to investigate the structure of the compound $(Ph_4As)_2[In(NCS)_5]$; in fact, the present study shows that the material obtained by recrystallization from acetone is $(Ph_4As)_3[In(NCS)_6]$. We return to this point below.

Intensities and cell dimensions were obtained from an approximately spherical specimen with a diameter varying from 0.27 to 0.30 mm. Systematic absences *hkl*, $h + k \neq 2n$ and *h*0*l*, $l \neq 2n$ indicate the space groups C2/c or Cc; intensity statistics and successful structure determination confirm C2/c. Accurate cell dimensions were determined from least-squares refinement of the 2θ values ($2\theta > 30^\circ$) for 16 strong reflexions centred on the Mo $K\alpha_1$ ($\lambda = 0.70926$ Å) peak on a Picker FACS-1 automated diffractometer. Data were collected to a maximum 2θ value of 35° with Nbfiltered Mo Ka radiation ($\lambda = 0.7107$ Å; $\theta - 2\theta$ scan, scan width = $1 \cdot 2^{\circ}$, scan speed = $2^{\circ} \min^{-1}$). Background counts of 10 s were measured at each of the scan limits. Variation in the intensity of either of two standard reflexions measured after every 70 reflexions was less than 1% during the data collection.

Intensity measurements were obtained for 4872 unique reflexions of which $2792 (57 \cdot 3\%)$ were treated

as observed with $I/\sigma(I) > 2.3$ where $\sigma(I) = [T + (t_s/t_b)^2 (B_1 + B_2) + (kI)^2]^{1/2}$ and T = total count, B_1 and B_2 are the background counts, $t_s = \text{scan time}$, $t_b = \text{total background count}$ time, k is constant at 0.03 and I is the net count. Lorentz and polarization effects were corrected for but no correction for absorption was deemed necessary, the maximum error in F being < 5%.

Heavy atoms were located from a Patterson synthesis. Refinement of positional and thermal parameters by full-matrix least squares and subsequent difference maps served to locate all non-hydrogen atoms. In addition, the difference maps indicated the presence of a molecule of acetone (apparently with reduced occupancy) on the twofold axis. Two final cycles of refinement (the function minimized was $\sum w(|F_o| - |F_c|)^2$) in which In, As and S were treated anisotropically gave a final R = 0.072 ($R_w = 0.076$) where $R = \sum (|F_o| - |F_c|)/\sum |F_o|$.

Unobserved reflexions were excluded from all stages of the least-squares refinement. For the initial refinement, constant (unit) weights were used but, in the final two cycles, weights $(=1/\sigma^2 F)$ were given in terms of $\sigma F = \sigma I/(\text{Lp})2F_o$. Scattering factors were those of Cromer & Waber (1965); anomalous dispersion corrections for In and As were taken from Cromer (1965). Crystallographic computer programs have been described (Einstein & Jones, 1972).

Table 1. Bond lengths and angles

(a) Interatomic distances (Å)

In(1) - N(1)	2.16 (2)	In(2) - N(4)	2 ·16 (1)
In(1)-N(2)	2.12 (2)	$\ln(2) - N(5)$	2.15(2)
In(1)-N(3)	2.06 (2)	In(2) - N(6)	2.12(2)
N(1) - C(1)	1.10 (3)	N(4) - C(4)	1.18 (2)
N(2) - C(2)	1.15 (3)	N(5) - C(5)	1.16 (2)
N(3) - C(3)	1.10 (4)	N(6) - C(6)	1.12 (3)
C(1) - S(1)	1.66 (2)	C(4) - S(4)	1.63 (2)
C(2) - S(2)	1.65 (3)	C(5) - S(5)	1.65 (2)
C(3) - S(3)	1.72(3)	C(6) - S(6)	1.68(2)

Average C-C distance 1.41 [72 C-C bonds (12 phenyl rings)] Average As-C distance 1.91

(b) Interatomic angles (°)

In(1) - N(1) - C(1)	162 (2)	In(2) - N(4) - C(4)	171 (1)
In(1) - N(2) - C(2)	166 (2)	In(2) - N(5) - C(5)	171 (2)
In(1) - N(3) - C(3)	153 (2)	In(2) - N(6) - C(6)	167 (1)
N(1) - C(1) - S(1)	173 (2)	N(4) - C(4) - S(4)	177 (2)
N(2) - C(2) - S(2)	174 (2)	N(5) - C(5) - S(5)	178 (2)
N(3) - C(3) - S(3)	176 (2)	N(6) - C(6) - S(6)	177 (1)

Average In-N-C 165 ± 5

^{*} Author to whom correspondence should be addressed.

[†] Present address: Department of Chemistry, University of Windsor, Windsor, Ontario, N9B 3P4, Canada.

Fig. 1. View illustrating the ionic packing of [In(NCS)₆] [AsPh₄]₃.

Bond lengths and angles relevant to the discussion are given in Table 1.* Fig. 1 illustrates the ionic packing (phenyl rings have been omitted for clarity).

Discussion Crystallization of the compound studied here occurs with eight formula units per unit cell. Half of the $[In(NCS)_{6}]^{3-}$ ions occupy centres of symmetry, the others are on twofold axes. Within experimental error, the coordination shell about both In atoms is a regular octahedron and, as might be expected, the ligand bonds to In through the hard, electronegative N atom. This result confirms the earlier conclusion, based on vibrational spectroscopy (Habeeb & Tuck, 1973). Such techniques have also established this mode of bonding for the neutral compounds $M(NCS)_3$ (M = Al, Ga, In) and their adducts (Patel, Sowerby & Tuck, 1967; Goggin, McColm & Shore, 1966; Patel & Tuck, 1969). Double-bond character is not expected in the In-N bonds: this is reflected in the fact that the N=C=S groups show no significant departures from linearity. Variations in the In–N–C angle are interpreted here as arising from packing considerations.

The change of stoichiometry from

-

 $(Ph_4As)_2[In(NCS)_5]$ to $(Ph_4As)_3[In(NCS)_6]$ on recrystallization is interesting in the light of earlier work on the anionic halogeno complexes of In¹¹¹, some of which are known to undergo similar rearrangements. A striking example is $(Et_4N)_2InCl_5$, which can be recrystallized unchanged from dichloromethane (Brown, Einstein & Tuck, 1969), but which yields $Et_4N.InCl_4$ on recrystallization from ethanol (Gislason, Lloyd & Tuck, 1971). These redistribution reactions and the concomitant preparation of anionic complexes of different stoichiometry and coordination number, are

an important feature of In^{III} chemistry (Tuck, 1970; Carty & Tuck, 1975), and one which obviously extends to complexes involving the isothiocyanate ligand.

Our results also show that the packing arrangement is such that each In has nine nearby As (shortest distance = $6 \cdot 7$ Å) and that each As is surrounded by three In atoms in an approximately trigonal environment. During refinement, S(3) appeared to have unusually large anisotropic thermal motion parameters. [The alternative interpretation in terms of two 'half atoms' in adjacent disordered positions (~ $0 \cdot 5$ Å apart) did not behave well.] C(3) and N(3) also exhibit larger isotropic thermal parameters than comparable atoms.

We acknowledge financial support from the National Research Council of Canada.

References

- BROWN, D. S., EINSTEIN, F. W. B. & TUCK, D. G. (1969). Inorg. Chem. 8, 14–18.
- CARTY, A. J. & TUCK, D. G. (1975). Progr. Inorg. Chem. 19, 245-337.
- CROMER, D. T. (1965). Acta Cryst. 18, 17-23.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104-109.
- EINSTEIN, F. W. B. & JONES, R. D. G. (1972). *Inorg. Chem.* **11**, 395–400.
- GISLASON, J., LLOYD, M. H. & TUCK, D. G. (1971). Inorg. Chem. 10, 1907–1910.
- GOGGIN, P. L., MCCOLM, I. J. & SHORE, R. (1966). J. Chem. Soc. (A), pp. 1314–1317.
- HABEEB, J. J. & TUCK, D. G. (1973). J. Chem. Soc. Dalton, pp. 96–98.
- PATEL, S. J., SOWERBY, D. B. & TUCK, D. G. (1967). J. Chem. Soc. (A), pp. 1187–1190.
- PATEL, S. J. & TUCK, D. G. (1969). Canad. J. Chem. 47, 229–233.
- TUCK, D. G. (1970). La Nature et les Propriétés des Liaisons de Coordination. Proceedings of CNRS Conf. No. 191. pp. 159-166, Paris.

^{*} A list of structure factors and the final positional and thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31731 (28 pp., 1 microfiche). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.